

Flash-Pro 极速敲除试剂盒说明书

(类器官/干细胞专用)

产品货号	产品名称	规格	
EDKO-K05	Flash-Pro 极速敲除试剂盒	50μL	
	(Flash-Pro CRISPR KO Kit)	100μL	

【产品简介】

Flash-Pro 极速敲除试剂盒通过递送预组装的递送载体、Cas9 蛋白与 sgRNA 复合物(RNP),实现高效、精准的基因敲除,是一款专为科研用户定制研发的即用型基因敲除试剂盒。该产品包含艾迪基因创新研发的 CRISPR RNP 递送载体以及经数千例实战验证过的 Cas 酶,经过特殊处理的递送载体-RNP 复合物能够在哺乳动物细胞中产生高效的基因组编辑。

【储存条件及有效期】

有效期 6 个月,储存条件-80°C,干冰运输。 建议根据使用次数进行分装,避免反复冻融。

【产品优势】

- 高编辑效率:高效的递送载体和RNP直接递送方式,基因敲除效率高达95%。
- **周期短**:本产品提供一体化的载体-RNP 复合物,转染后 6 小时即可检测到 DNA 切割,48 小时内完成基因敲除。
- **普适性强:** 适用于多数哺乳动物细胞,对于难转染细胞、生长代数受限细胞同样具有优势。
- 操作要求低:无需复杂操作,无需电转仪,即加即用,实现高效编辑。无需 筛选,瞬时作用机制,无需抗生素或荧光标记筛选,节省实验周期。
- **低风险:** 低脱靶效应, RNP 在细胞内的半衰期短(数小时), Cas 蛋白快速降解, 显著减少非特异性切割。无外源 DNA 随机整合风险。
- 细胞毒性低:创新研发的生物分子递送载体,结合 RNP 的递送方式。

【产品组分】

产品编号	组分	规格	备注	
EDKO-K05-50	递送载体-RNP 复合物	50 μL (足够 3 个 24 孔)	24 孔板,15uL/孔	
EDKO-K05-100	递送载体-RNP 复合物	100 μL (足够 3 个 12 孔)	12 孔板, 30uL/孔	

注意:本产品只提供一体化的递送载体-RNP 复合物,客户只需要提供 sgRNA 序列。

【可选组分】

 编号	可选项	备注
1	sgRNA 设计	艾迪基因提供 sgRNA 序列设计服务
2	阳性对照	人 B2M 基因 递送载体-RNP 复合物

【类器官实验步骤】

1. 类器官培养和铺板(以24孔板为例)

类器官培养至生长旺盛状态,消化计数,接种 50 μ L 1.2×105 细胞至 24 孔板。 请使用生长状态较好的类器官。并确保细胞无细菌、真菌或支原体污染。 消化类器官至 3-5 个细胞团即可。如果类器官是近期复苏的液氮冻存类器官,请 在转染前至少传代两次。

2. 类器官转染

- 1) 提前将载体-RNP 复合物从 -80℃ 转移至 4 ℃ 缓慢解冻, 每孔缓慢加 入 15 μL, 用完全培养基补足 100μL 体积, 轻轻晃动混匀, 将 24 孔板进 行 32°C 500g 离心 90 min;
- 2) 收集类器官细胞, 离心分离细胞沉淀和上清液, 将细胞沉淀进行种胶, 上清液用于培养,并补足完全培养基;
- 3) 转染 24h, 更换完全培养基,继续培养。

转染时细胞量较少,但转染步骤较多,注意避免细胞在操作过程中丢失; 若无孔板离心机推荐使用 2mL EP 管替代、不建议使用 1.5mL EP。

3. 分析转染细胞

转染 72h 后, 提取所转染细胞的基因组, 使用特异性引物扩增靶标区域(扩 增子包含 sgRNA 靶向切割的位置);

使用 TIDE (分析网址: https://tide.nki.nl/)或者 ICE (分析网址:

https://ice.synthego.com/#/,使用说明: https://www.synthego.com/guide/how-t o-use-crispr/ice-analysis-guide) 等工具进行基因编辑效率分析。

【细胞实验步骤】

1. 细胞培养和铺板(以24孔板为例)

细胞培养至生长旺盛状态,转染前24h,接种细胞至24孔板(对于贴壁细 胞, 使转染时细胞汇合度为 50%~60%; 对于悬浮细胞, 使转染时细胞数量为 $1.2 \times 105 \sim 1.6 \times 105$) .

请使用生长状态较好的细胞,并确保细胞无细菌、真菌或支原体污染。如 果细胞是近期复苏的液氮冻存细胞,请在转染前至少传代两次。

2. 细胞转染

提前将载体-RNP 复合物从 -80°C 转移至 4°C 缓慢解冻, 每孔加入 10 μL 加入时分多次缓慢加入,加入后轻轻晃动混匀。

对于贴壁细胞的要求:细胞状态好,分布均匀,汇合度为50%~60%,则可 直接加入本产品;

对于悬浮细胞的要求:细胞状态好,加入载体-RNP 复合物前需将细胞团轻 柔吹散,分散均匀后直接加入本产品。

3. 分析转染细胞

转染 48h 后, 提取所转染细胞的基因组, 使用特异性引物扩增靶标区域(扩 增子包含 sgRNA 靶向切割的位置);

使用 TIDE (分析网址: https://tide.nki.nl/)或者 ICE (分析网址: https://ice.synthego.com/#/,使用说明: https://www.synthego.com/guide/how-t o-use-crispr/ice-analysis-guide) 等工具进行基因编辑效率分析。

【类器官结果展示】

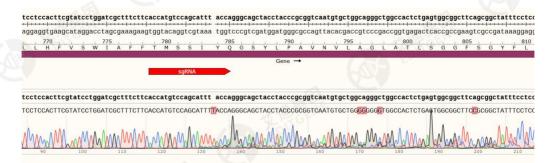


图 1 小鼠舌类器官 (某基因) Sanger 测序比对结果

图 2 小鼠舌类器官 (某基因) 多克隆 ICE 分析结果

【干细胞结果展示】

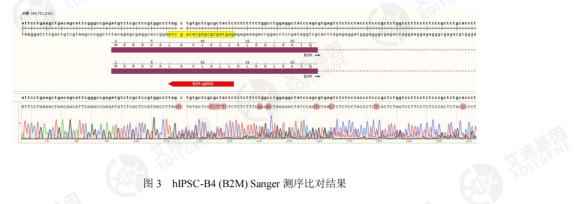


图 3 hIPSC-B4 (B2M) Sanger 测序比对结果

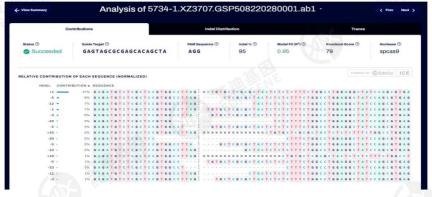


图 4 hIPSC-B4 (B2M) 多克隆 ICE 分析结果

【部分成功编辑清单】

细胞类型	编辑效率	细胞类型	编辑效率	细胞类型	编辑效率
Raw264.7	100%	SNU-1	90%	H9	75%
CHO-K1	100%	HEK293	90%	SK-N-AS	75%
A9	99%	PANC-1	90%	OCI-Aml3	74%
小鼠舌类器官	98%	SGC-7901	90%	VCaP	74%
JURKAT	97%	HMRSV5	90%	ARPE-19	74%
HK-2	97%	MDA-T32	90%	MM1S	73%
SN4741	97%	HGC-27	89%	K-562	73%
786-0	96%	U-87-MG	89%	A549	73%
U2OS	96%	Caki-1	89%	MKN45	71%
HUH-6	96%	LX-2	89%	HT-1080	71%
UM-UC-3	95%	3T3-L1	89%	SH-SY5Y	66%
U251	95%	KYSE-30	88%	MDA-MB-231	66%
hIPSC-B4	95%	AGS	88%	SNT-8	66%
IBMDM	94%	HLE-B3	88%	LO2	65%
HEC-1-B	94%	143B	87%	AsPC-1	64%
NCI-H1703	94%	MC38	87%	OCI-AML2	64%
SW13	94%	BV2	86%	NCI-H460	61%
NALM6 clone G5	94%	NCI-H716	86%	hepg2	61%
hela	93%	NCI-H1299	85%	HT-29	61%
Huh7	93%	SNU-449	84%	MB49	57%
DLD-1	92%	KMRC-1	84%	PC-3	52%
DMS-273	92%	SVG p12	84%	SW579	52%
HEK293T	92%	MOLM-13	84%	5637	52%
Hap1	92%	U-937	83%	THP-1	51%
A673	92%	KMS-12-PE	83%	HEL	50%
Ishikawa	92%	CACO-2	82%	CAL-33	48%
SNU-398	91%	CAL-27	82%	SK-N-SH	48%
RKO	91%	JAR	81%	Calu-3	47%
KYSE150	91%	NIH/3T3	81%	A375	46%
SK-BR-3	91%	MPC5	80%	FaDu	44%
2V6.11	91%	RD	79%	OE33	42%
MDA-T41	91%	NCTC929	79%	NCI-H3122	42%
ID8	91%	GBC-SD	78%	KLE	42%
HuCCT1	90%	HCT-116	77%	C2C12	42%
SK-OV-3	90%	NCI-H520	75%	OVCAR-3	40%

【常见问题及解答】

1. 如何证明无需筛选仍能获得高编辑效率?

答:本产品已在多个细胞上验证,RNP系统在转染后4小时内即进入细胞发 挥作用, Cas9 蛋白在 24-48 小时降解, 通过瞬时高效表达实现编辑, 无需持 续筛选。

2. 为何对细胞的损伤比较小?

答:本产品采用先进的生物分子转染技术,相比传统化学转染法的毒性及电 转法的物理冲击,具有显著优势。

3. 能否在悬浮细胞中达到相同效率?

答:通常而言,悬浮细胞转染难度相对较大。然而,本产品凭借卓越性能, 不仅适用于贴壁细胞,在悬浮细胞中同样表现出色。以 Jurkat 细胞为例,转 染 48h 后即可实现高达 97% 的编辑效率, 充分彰显了本产品在悬浮细胞转 染方面的高效率优势, 可充分满足您对悬浮细胞转染的高标准需求。

4. 若使用试剂盒敲除失败, 该如何处理?

答: 使用本试剂盒进行基因敲除时, 若出现敲除失败的情况, 艾迪基因将不 收取试剂盒费用,同时,您所支付的试剂盒费用可直接转为艾迪基因提供的 基因敲除服务费用,确保您在基因编辑实验中无后顾之忧。

注: 使用该产品发表文章时,请标注我司名称 Guangzhou Editgene Co., Ltd. China, CRISPR RNP KO kit (CAS: EDKO-K05)

